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Abstract
We have investigated the effect of finite non-magnetic impurity doping concentration on the
critical temperature (Tc) of the MgB2 superconductor by using the coherent potential
approximation. We found, by choosing the chemical potential μ = −0.47t and scattering
strength δ = 4.5t , that Tc is reduced with impurity concentration similarly to the measured
experimental results.

1. Introduction

The discovery of superconductivity with a transition tempera-
ture of 39 K in a binary metallic compound of MgB2 [1] has at-
tracted great interest from scientists all over the world because
of its high transition temperature. In the early stage of super-
conductive material investigation, several inter-metallic mate-
rial groups including the AlB2-type structure were already rec-
ognized as candidate materials for ‘high-Tc’ superconductors,
mainly by Matthias and Hulm in the 1950s. ‘Matthias’s rule’
was derived through the investigation of A15-type supercon-
ductors [2] such as Nb3Sn, V3Ga, Nb3(AlGe)2 and Nb3Ge3,
which are important for practical applications. The supercon-
ductors discovered in this stage are called ‘BCS supercon-
ductors’ because their behavior can be well explained within
the framework of the BCS (Bardeen–Cooper–Schrieffer) the-
ory. Most studies performed on this compound indicate that
MgB2 consistently behaves as a phonon-mediated supercon-
ductor within the framework of the BCS theory, probably in a
strong coupling limit [3, 4]. The transition temperature is sur-
prisingly high for a non-cuprate material, and much above the
limit expected for a classical superconducting compound. The
observation of a boron isotope effect on Tc suggests a phonon-
mediated pairing mechanism [3]. In the BCS theory [5], Tc

scales with the Debye energy when the effective attractive in-
teraction between electrons is due to phonons.

The effects of impurities in this material are very
interesting to study. According to Anderson’s theorem (AT) for
classic s-wave superconductors [6–8], non-magnetic impurities

do not affect superconducting properties in zero magnetic field.
However, it was shown later by Markowitz and Kadanoff [9]
that Tc is actually reduced in the presence of gap anisotropy
and impurity scattering. Also, we have shown [10] that, for
low impurity concentrations c and weak on-site energies, AT
is valid, while in the strong scattering limit Tc is very small
even for low c, and it is completely suppressed by increasing
c; hence AT is violated in this regime. An application of a
two-band model is due to Golubov and Mazin [11]. Indeed,
they predicted a rather drastic decrease in Tc due to inter-
band impurity scattering. They also found that, as the inter-
band scattering increases, the density of states changes from
the two-gap structure inherent in the two-band model to the
conventional single-gap structure. This reduction in Tc has
been confirmed recently by a couple of experiments. Wang
et al [12] measured the specific heat of polycrystalline MgB2
after irradiation. They found both the suppression of Tc

and a tendency towards a single-gap structure as scattering is
increased by irradiation. Lee et al [13] clarified the possibility
of the complete suppression of superconductivity by replacing
B in MgB2 by C. However, few quantitative calculations have
been performed on the impurity effects based on a realistic
model for MgB2 [14]. To study the influence of electron
doping on the Mg site in MgB2, Slusky et al [15] investigated
the substitution of Al for Mg to synthesize MgB1−xAlx B2

and found that their samples lose superconductivity when
x was near about 0.4. Zhang et al [16], Kazakov et al
[17] and Rogacki et al [18] studied the superconductivity of
Mg(B1−xCx)2 and found that the transition temperature of
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their samples decreases when they were doped with carbon
powder. We investigated the effects of non-magnetic impurity
doping on the reduction in the critical temperature, Tc, of MgB2
superconductor to explain the experimental results of [17, 18].
We calculated Tc in terms of the impurity doping concentration,
in agreement with the experimental data in [17, 18]. In
section 2, we introduce the model and obtain the equation
of motion. In section 3, by using the coherent potential
approximation (CPA), we solve the equation of motion and
calculate Tc. In the last section, we present the numerical
results.

2. Model and formalism

MgB2 has the AlB2-type structure. It is composed of two layers
of boron and magnesium along the c-axis in the hexagonal
lattice with a = 3.08 and c = 3.51 Å (hexagonal: space
group P6/mmm). In this structure, the characteristic two-
dimensional (2D) honeycomb layers formed by boron atoms
are sandwiched by the triangular metal layers, like intercalated
graphite. Each Mg atom is at the center of a hexagonal
prism of boron atoms at a distance of 2.5 Å. Each boron
atom is surrounded by three other boron atoms, forming an
equilateral triangle at a distance of a0 = a√

3
∼ 1.78 Å,

while the Mg–Mg distance in the plane is equal to the lattice
constant a. Because lattice constants a and c in the AlB2-type
structure are in the range 3.0–3.2 Å and 3.0–4.0 Å, respectively,
MgB2 has an intermediate lattice constant among this type
of structure. The two electrons belonging to the Mg atom
transfer to B2, and the former changes to Mg2+ while the
latter becomes B2−. The B2 ions become metallic by obtaining
two electrons, and Mg ions become insulating by losing two
electrons. It has also been shown experimentally by Takahashi
et al [19] using photoemission spectroscopy that the B2 plane
is superconducting. Thus we assume that MgB2 consists of
2D B2 superconductors with weak Cooper pair interaction
arranged in parallel planes normal to the direction of the c-axis.

We start our investigation with the following random
extended attractive Hubbard model on a three-dimensional
hexagonal lattice,

H = −
∑

i jσαβ

tαβ

iσ jσ cα†
iσ cβ

jσ +
∑

i jσα

Ui j n̂
α
iσ n̂α

i−σ +
∑

iσα

(εα
i −μ)n̂α

iσ ,

(1)
where α and β refer to the two non-equivalent sites, A or B, in
the graphite-like unit cell (figure 1), cα†

iσ (cα
iσ ) is the creation

(annihilation) operator of an electron with spin σ on Bravais
lattice site i , and n̂α

iσ = cα†
iσ cα

iσ is the number operator. tαβ

iσ jσ
are the hopping integrals between sites i and j with spin σ .
Ui j is the attractive interaction potential between electrons of
opposite spins at sites i and j . μ is the chemical potential,
and εα

i is the random on-site energy, which takes value 0
with probability 1 − c for host sites (boron host sites) and
δ with probability c for impurity sites (related to the carbon
impurities).

In the weak interaction regime, for any given configuration
of impurity sites the solution of equation (1) is given
by the Bogoliubov–de Gennes equation where, for singlet-
state superconductors, the order parameter, �σσ ′

i j =

Figure 1. A two-dimensional graphite-like (B2) sheet. The light
dashed lines illustrate the Bravais lattice unit cells; a1 and a2 are the
primitive vectors. Each cell includes two non-equivalent sites, which
are denoted by A and B.

Uσσ ′
i j

β

∑
n Gσσ ′

(i, j ; iωn), of Cooper pairs with same spins are

zero �
↑↑
i j = �

↓↓
i j = 0 and �

↑↓
i j = �

↓↑
i j = �i j ,

∑

l

⎛
⎜⎝

(E + εi + μi↓)δil + t AA
il �il

�∗
il (E − εi − μi↑)δil − t AA

il
t B A
il 0

0 −t B A
il

t AB
il 0

0 −t AB
il

(E + εi + μi↓)δil + t B B
il �il

�∗
il (E −εi −μi↑)δil −t B B

il

⎞

⎟⎠

× G(l, j ; E) = Iδi j , (2)

where μiσ = μ − Ui ni−σ is the on-site renormalized chemical
potential due to the usual Hartree decoupling, �il = �0

il +δ�il

where �0
il is the clean system order parameter and δ�il is the

spatial deviation of the order parameter, and tαβ

iσ lσ is denoted
by tαβ

il . The coupling parameters Ui j and order parameters �i j

have non-zero values only for two cases: U ‖
i and �

‖
t if the sites

i and j coincide in a B2 plane, and U⊥
〈i j〉 and �⊥

〈i j〉 if i and j are
nearest neighbors in adjacent B2 planes. Ui j and �i j defined
as,

�i j = �
‖
i j + �⊥

i j , (3)

Ui j = U ‖
i j + U⊥

i j . (4)

For first nearest neighbor inter planes, the local order
parameter intra plane and local interaction potential intra plane,
equations (3) and (4) can be written as,

�i j = �
‖
i δi j + �⊥

〈i j〉, (5)

Ui j = U ‖
i δi j + U⊥

〈i j〉. (6)

We suppose that these local quantities do not change
appreciably on length scales ∼ 1

k so, by writing the Fourier
transform of order parameters, we have,

�⊥(k) = 1

N

∑

〈i j〉
�⊥

〈i j〉 eik·r〈i j 〉 = 2�⊥
〈i j〉 cos(ckz), (7)

�‖(k) = �
‖
i , (8)

so we find the gap function in the form,

�(k) = �
‖
i + 2�⊥

〈i j〉 cos(ckz). (9)

2



J. Phys.: Condens. Matter 20 (2008) 095212 R Moradian and H Mousavi

By assuming that the order parameter is real, we obtain,

�
‖
i = −U ‖

i

π

∫ +∞

−∞
dE f (E) Im G AA↑↓

12 (i, i ; E), (10)

�⊥
〈i j〉 = −U⊥

〈i j〉
π

∫ +∞

−∞
dE f (E) Im G AA↑↓

12 (i, j ; E), (11)

and the local band filling, ni , is

ni = 2
∫ +∞

−∞
dE f (E) Im G AA↑↑

11 (i, i ; E), (12)

where f (E) = 1

e
E

kB T +1
. The Green’s function matrix for

disordered crystal, G(i, j ; E), is defined by,

G(i, j ; E)

=

⎛

⎜⎜⎜⎝

G AA↑↑
11 (i, j ; E) G AA↑↓

12 (i, j ; E)

G AA↓↑
21 (i, j ; E) G AA↓↓

22 (i, j ; E)

G B A↑↑
11 (i, j ; E) G B A↑↓

12 (i, j ; E)

G B A↓↑
21 (i, j ; E) G B A↓↓

22 (i, j ; E)

G AB↑↑
11 (i, j ; E) G AB↑↓

12 (i, j ; E)

G AB↓↑
21 (i, j ; E) G AB↓↓

22 (i, j ; E)

G B B↑↑
11 (i, j ; E) G B B↑↓

12 (i, j ; E)

G B B↓↑
21 (i, j ; E) G B B↓↓

22 (i, j ; E)

⎞
⎟⎟⎟⎠ . (13)

Equation (2) can be written as,

G(i, j ; E) = G0(i, j ; E) +
∑

lĺ

G0(i, l; E)Vlĺ G(ĺ, j ; E),

(14)

where the random potential matrix, Vlĺ , is defined by,

Vlĺ

=

⎛
⎜⎜⎜⎝

εlδlĺ −∑
´́l U

ĺ ´́ln ´́l↓ δ�
‖
l δlĺ + δ�⊥

lĺ

δ�
‖
l δlĺ + δ�⊥

lĺ
−(εlδlĺ −∑

´́l U
ĺ ´́l n ´́l↑)

0 0
0 0

0 0
0 0
εlδlĺ −∑

´́l U
ĺ ´́l n ´́l↓ δ�

‖
l δlĺ + δ�⊥

lĺ

δ�
‖
l δlĺ + δ�⊥

lĺ
−(εlδlĺ −∑

´́l U
ĺ ´́ln ´́l↑)

⎞

⎟⎟⎟⎠ ,

(15)

and the clean system Green function, G0(i, j ; E), is given by,

G0(i, j ; E) = 2

N

∑

k

eik·ri j

×
⎛

⎝
E + μ + ε⊥

k �0(k) εk 0
�0(k) E − μ − ε⊥

k 0 −εk

ε∗
k 0 E + μ + ε⊥

k �0(k)

0 −ε∗
k �0(k) E − μ − ε⊥

k

⎞

⎠
−1

,

(16)

where εk = − 2
N

∑
i j ti j eik·ri j is the band structure and

�0(k) = �0‖ + �0⊥(k) is the Fourier transform of the clean
system order parameter. We choose basic vectors as (figure 1),

a01 = a0

2
e1 −

√
3a0

2
e2, a02 = a0

2
e1 +

√
3a0

2
e2,

a03 = −(a01 + a02),

(17)

a1 = ae1, a2 = −
√

3a

2
e1+ a

2
e2, a3 = ce3, (18)

where a0 = a√
3
. In our numerical calculations, hopping to the

first nearest neighbors’ intra a B2 plane and inter B2 planes is
considered, and we neglected other hopping terms, so
ε

‖±
k = ε±

k

= ±t‖

√√√√1 + 4

[
cos

(√
3kxa

2

)
+ cos

(
kya

2

)]
cos

(
kya

2

)
,

(19)

ε⊥
k = 2t⊥ cos(ckz). (20)

Here t‖ = t AB
〈i j〉 = t B A

〈i j〉 and t⊥ = t AA
〈i j〉 = t B B

〈i j〉 are hopping
integrals intra a B2 plane and inter B2 planes, respectively.
Here we do not consider randomness in Ui j , hence the
interaction potential is chosen to be U ‖

i = 2.5t , where t‖ =
t = 1.6 eV and t⊥ = 0.96 eV. Also, for comparison of our
results with experimental data, we set the impurity scattering
strength, δ = 4.5t , and chemical potential, μ = −0.47t .

The Dyson equation corresponding to equation (14) for the
average Green’s function, Ḡ(i, j ; E), is given by,

Ḡ(i, j ; E) = G0(i, j ; E)

+
∑

lĺ

G0(i, l; E)Σ(l, ĺ, E)Ḡ(ĺ, j ; E), (21)

where the self-energy, Σ(l, ĺ, E), is defined by,
∑

ĺ

〈Vlĺ G(ĺ, j ; E)〉 =
∑

ĺ

Σ(l, ĺ, E)Ḡ(ĺ, j ; E). (22)

The Fourier transformation of equation (21) leads to the
following relation for the average Green’s function matrix,
Ḡ(i, j ; E):

Ḡ(i, j ; E) = 2

N

∑

k

eik·ri j

×

⎛
⎜⎜⎝

E + μ + ε⊥
k − �11(k, E) �0(k) − �12(k, E)

�0(k) − �21(k, E) E − μ − ε⊥
k − �22(k, E)

ε∗
k 0

0 −ε∗
k

εk 0
0 −εk

E + μ + ε⊥
k − �33(k, E) �0(k) − �34(k, E)

�0(k) − �43(k, E) E − μ − ε⊥
k − �44(k, E)

⎞

⎟⎠

−1

.

(23)
Equations (10)–(23) should be solved to determine the average
Green’s function, Ḡ(i, j ; E). In general, there is no
analytical solution for such random systems, hence it should
be solved approximately. There are many approximations
such as the self-consistent Born approximation or Abrikosov–
Gorkov theory, which is valid for weak scattering (δ 
bandwidth) and all impurity concentrations [20], the self-
consistent T-matrix approximation, which is limited to the
case of low impurity concentrations [21], and the coherent
potential approximation (CPA), which is valid for all impurity
concentrations and impurity strengths [20]. We use the
coherent potential approximation (CPA) to obtain the average
Green’s function matrix, Ḡ(i, j ; E), and Tc. In the next
section, we derive a set of equations for the calculation of Tc in
the CPA formalism.
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3. Calculation of Tc in the CPA formalism

To investigate the effects of impurities, identified by their
strength δ and concentration c, on the critical temperature,
Tc, of MgB2 superconductor, we used the CPA. In the CPA
formalism, inter-site correlations are neglected and each lattice
site is replaced by an effective site, except for one, which is
called the impurity site and is denoted by i . So the self-energy
is local and takes the same value for all sites, Σ(i, j, E) =
Σ(E)δi j ; also, in the random potential, we consider just the
local random terms, δ�i j = δ�

‖
i δi j . Hence equations (22)

and (23) are reduced to [21]

〈Vi Gimp(i, i ; E)〉 = Σ(E)Ḡ(i, i ; E), (24)

and

Ḡ(i, j ; E) = 2

N

∑

k

eik·ri j

×

⎛

⎜⎜⎝

E + μ + ε⊥
k − �11(E) �0(k) − �12(E)

�0(k) − �21(E) E − μ − ε⊥
k − �22(E)

ε∗
k 0
0 −ε∗

k

εk 0
0 −εk

E + μ + ε⊥
k − �33(E) �0(k) − �34(E)

�0(k) − �43(E) E − μ − ε⊥
k − �44(E)

⎞

⎟⎟⎠

−1

,

(25)

respectively, where the impurity Green’s function, Gimp

(i, i ; E), is related to the averaged Green’s function,
Ḡ(i, i, ; E), by [21, 22]

Gimp(i, i ; E) = Ḡ(i, i ; E)

+ Ḡ(i, i ; E)(Vi − Σ(E))Gimp(i, i ; E). (26)

Also, the random potential in equation (15) is reduced to

Vi =

⎛

⎜⎜⎝

εi − U ‖
i ni↓ δ�

‖
i

δ�
‖
i −(εi − U ‖

i ni↑)

0 0
0 0

0 0
0 0
εi − U ‖

i ni↓ δ�
‖
i

δ�
‖
i −(εi − U ‖

i ni↑)

⎞

⎟⎟⎠ . (27)

The new average Green’s function, Ḡ(i, i, ; E), is given by
taking the average over all possible impurity configurations:

Ḡ(i, i ; E) = 〈Gimp(i, i ; E)〉. (28)

Since site i can pertain to non-equivalent sub-sites A and B,
four possible configurations at this site are: boron–boron (both
sub-sites A and B of site i are boron atoms); boron–impurity
(sub-site A is a boron atom, while sub-site B is an impurity);
impurity–boron (sub-site A is an impurity atom, while sub-site
B is a boron atom); and impurity–impurity (both sub-sites A
and B of site i are impurity atoms). The probability of these
configurations are P1 = (1−c)2, P2 = (1−c)c, P3 = c(1−c)

and P4 = c2, respectively. The average intra-plane order
parameter is calculated from

�̄
‖
i =

4∑

γ=1

Pγ �
‖γ
i . (29)

Equations (24)–(29) should be solved self-consistently to
provide the average Green’s function, Ḡ(i, i, ; E), in the CPA
formalism. We continue our discussions by deriving a set
of equations to obtain the critical temperature in the CPA
formalism. At Tc both the local and average intra B2 plane
order parameters, �

‖
i and �̄‖, go to zero, and the spatial

deviation of the local order parameter, δ�
‖
i , with respect to

the averaged order parameter, �̄‖, is negligible, so

�
‖
i ≈ �̄‖. (30)

By inserting equation (30) into equation (24) we found
that [10]

�̄‖ = �12(E) = �34(E). (31)

By using equation (30) and the gap equation (10), for the
average order parameter, �̄‖, at Tc we obtain,

−U ‖
i

π

∫ +∞

−∞
dE f (E) Im

[∫ +∞

−∞
dεN0‖(ε)

∫ +∞

−∞
dέN0⊥(έ)

× Ḡ12(i, i ; E + i0+)

]
= 1, (32)

where N0‖(ε) and N0⊥(έ) represent the clean system density
of states and are defined by

N0‖(ε) = 2

N‖
∑

k

δ(ε − εk), (33)

N0⊥(έ) = 1

N⊥
∑

k

δ(έ − ε⊥
k ). (34)

In equation (32), Ḡ12(i, i ; E + i0+) is

Ḡ12(i, i ; E + i0+) = ζ(ε, έ; E + i0+)

ξ(ε, έ; E + i0+)
, (35)

where

ζ(ε, έ; E + i0+) = −ε2 + [(E + i0+) + μ + έ

− �33(E + i0+)][(E + i0+) − μ − έ − �44(E + i0+)],
(36)

and

ξ(ε, έ; E + i0+) = ε4 − ε2{[(E + i0+) + μ + έ

− �11(E + i0+)][(E + i0+) + μ + έ − �33(E + i0+)]
+ [(E + i0+) − μ − έ − �22(E + i0+)][(E + i0+)

− μ − έ − �44(E + i0+)]}
+ [(E + i0+) + μ + έ − �11(E + i0+)][(E + i0+)

− μ − έ − �22(E + i0+)]
× [(E + i0+) + μ + έ − �33(E + i0+)][(E + i0+)

− μ − έ − �44(E + i0+)]. (37)

Equations (30) and (31) and equations (24)–(29) should be
solved self-consistently to calculate �11(E + i0+), �22(E +
i0+), �33(E + i0+) and �44(E + i0+). Then these self-
energies should be inserted into equation (32) to obtain the
critical temperature, Tc.

4
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Figure 2. Tc/t in terms of the average band filling, n̄, for different
impurity concentrations, c, where δ = 4.5t bandwidth.

Figure 3. Tc/t in terms of the average band filling, n̄, for different
values of the scattering strength, δ.

4. Results and discussions

We have investigated the reduction of the critical temperature,
Tc, of MgB2 in terms of non-magnetic impurity doping for
different impurity concentrations, c, and different values of
scattering strength, δ. To find the role of such impurities on the
reduction of Tc, we have calculated Tc by varying the impurity
concentration c, impurity strength δ, and chemical potential μ.
Figure 2 illustrates Tc/t in terms of the average band filling,
n̄, at fixed impurity strength, δ = 4.5t , for different impurity
concentrations, c = 0.01, 0.10, 0.20 and 0.30, where Tc is
calculated from equation (32); we found that, by increasing the
impurity concentration, the critical temperature is reduced and,
for some average band filling, there is no superconductivity
state. To consider the effect of the scattering strength on Tc, we
have plotted Tc/t in terms of the average band filling for a fixed
impurity concentration and for different scattering strengths.

Figures 3–5 show Tc/t in terms of the average band
filling for a fixed impurity concentration and for different
values of the scattering strength, δ = 3t and δ = 4.5t ;
for all these impurity concentrations, Tc decreased. Figure 6
illustrates that, by increasing the impurity strength and the
impurity concentrations, Tc decreased again. To compare

Figure 4. Tc/t in terms of the average band filling, n̄, for different
values of the scattering strength, δ.

Figure 5. Tc/t in terms of the average band filling, n̄, for different
values of the scattering strength, δ.

Figure 6. Tc/t in terms of the scattering strength, δ/t , for different
values of impurity concentrations, c.

our results with experimental data, we calculated Tc in terms
of the impurity concentration at a fixed impurity strength
and also a fixed chemical potential; we found that, just for
δ = 4.5t and μ = −0.47t , our results are in agreement
with the reported experimental results [17, 18]. Now we use
these parameters, δ = 4.5t and μ = −0.47t , to calculate
Tc in terms of the impurity concentrations, c. Figure 7
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Figure 7. Tc/t in terms of impurity concentrations, c, where
δ = 4.5t bandwidth; shown experimentally in [17, 18].

shows Tc/t in terms of the impurity concentrations for a
fixed chemical potential, μ = −0.47t , and a fixed impurity
strength, δ = 4.5t , Tc is reduced linearly by increasing
the impurity concentration, where it is compatible with the
experimental results reported in [17, 18] where they found
that the superconducting transition temperature decreases
monotonically with increasing carbon content in the full range
of substitution that was investigated.

5. Conclusion

In conclusion, we have investigated the reduction of the
critical temperature Tc of MgB2 superconductor in terms of the
non-magnetic impurity doping. Three cases are considered:
first, at a fixed scattering strength δ, Tc is calculated for
different impurity concentrations, c. Second, at fixed impurity
concentrations c, Tc is calculated for different scattering
strengths, δ. Finally, we have investigated the behavior of Tc

in terms of c for a fixed chemical potential. We found that, by
increasing δ and c, the critical temperature decreased and, for
some average band fillings, superconductivity disappears. By
comparing our results with experimental data, we found that,
just for δ = 4.5t and μ = −0.47t , Tc reduces approximately
linearly in terms of the impurity concentration, c.
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